Crea sito

Il paradosso di Monty Hall e la sua soluzione

Il problema di Monty Hall viene anche proposto nel film 21 (Blackjack), in cui il Professor Rosa sfida Ben a risolverlo.

Supponi di partecipare a un gioco a premi, in cui puoi scegliere tra tre porte: dietro una di esse c'è un'automobile, dietro le altre, capre. Scegli una porta, diciamo la numero 1, e il conduttore del gioco a premi, che sa cosa si nasconde dietro ciascuna porta, ne apre un'altra, diciamo la 3, rivelando una capra. Quindi ti domanda: "Vorresti scegliere la numero 2?" Ti conviene cambiare la tua scelta originale?

Cambiare porta migliora le chance del giocatore di vincere l'automobile?

Soluzione

La risposta è sì; le probabilità di trovare l'automobile raddoppiano.

La soluzione può essere illustrata come segue. Ci sono tre scenari possibili, ciascuno avente probabilità 1/3:
Il giocatore sceglie la capra numero 1. Il conduttore sceglie l'altra capra, la numero 2. Cambiando, il giocatore vince l'auto.
Il giocatore sceglie la capra numero 2. Il conduttore sceglie l'altra capra, la numero 1. Cambiando, il giocatore vince l'auto.
Il giocatore sceglie l'auto. Il conduttore sceglie una capra, non importa quale. Cambiando, il giocatore trova l'altra capra.
Nei primi due scenari, cambiando il giocatore vince l'auto; nel terzo scenario il giocatore che cambia non vince. Dal momento che la strategia "cambiare" porta alla vittoria in due casi su tre, le chance di vittoria adottando la strategia sono 2/3.
Una strategia di soluzione alternativa è considerare che se si suppone di cambiare, il solo caso in cui si perde è quello in cui originariamente si è scelta l'automobile e quindi la domanda del conduttore può essere considerata un invito a invertire le probabilità di successo con quelle di insuccesso.